Reply to "Comment on 'Algebraic perturbation theory for polar fluids: A model for the dielectric constant ${ }^{\prime}$ "

V. I. Kalikmanov
Department of Applied Physics, Computational Physics Section, University of Delft, Lorentzweg 1, 2628 CJ Delft, The Netherlands

(Received 14 June 2000)

Abstract

In their Comment [Phys. Rev. E 62, 8842 (2000)] Szalai et al. use the 'Fourier-transform-convolution method'" to correct the two three-body integrals entering our algebraic perturbation theory for polar fluids [Phys. Rev. E 59, 5085 (1999)]. We present an alternative analytical calculation of these integrals that is more transparent than that of Szalai et al. Compared with the original expression for the dielectric constant [Phys. Rev. E 59, 5085 (1999)] the corrected one demonstrates a better agreement with the simulation data for low and moderate values of the coupling constant.

PACS number(s): 61.20.Gy, 77.22.Ch, 75.50.Mm

The Comment by Szalai et al. [1] corrects calculations of the two three-body integrals in Eq. (20) of Ref. [2] using the "Fourier-transform-convolution method'" of Hbye and Stell [3]. In this paper, I want to show that the same results can be obtained in a more transparent way.

The $b_{2}^{(2)}$ in Eq. (20) of Ref. [2] can be expressed as $b_{2}^{(2)}$ $=b_{D}+b_{\Delta}$ with

$$
\begin{gather*}
b_{D}=\frac{1}{6} \rho\left(\beta s^{2}\right)^{2}\left(\frac{4 \pi}{3}\right)^{2} \gamma_{D}, \tag{1}\\
\gamma_{D}=\int d \mathbf{r}_{12}\left(1-3 \cos ^{2} \Theta_{12}\right) a_{D} \\
a_{D}=\int d \mathbf{r}_{3} \frac{1+3 \cos \alpha_{1} \cos \alpha_{2} \cos \alpha_{3}}{\left(r_{13} r_{23}\right)^{3}} g_{d}(123), \tag{2}
\end{gather*}
$$

and

$$
\begin{gather*}
b_{\Delta}=\frac{1}{3} \rho\left(\beta s^{2}\right)^{2}\left(\frac{4 \pi}{3}\right)^{2} \gamma_{\Delta} \tag{3}\\
\gamma_{\Delta}=\int d \mathbf{r}_{12} a_{\Delta}, \quad a_{\Delta}=\int d \mathbf{r}_{3} \frac{3 \cos ^{2} \alpha_{3}-1}{\left(r_{13} r_{23}\right)^{3}} g_{d}(123) . \tag{4}
\end{gather*}
$$

$g_{d}(123)$ is the three-body correlation function of hard spheres and $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are the angles of the triangle formed by the three particles.

The detailed derivation of γ_{D} and γ_{Δ}, presented in the Appendix, is more transparent than the "Fourier-transformconvolution method" used in [1]. It yields

$$
\begin{equation*}
\gamma_{D}=-\frac{32 \pi^{2}}{9}, \quad \gamma_{\Delta}=\frac{17 \pi^{2}}{9} \tag{5}
\end{equation*}
$$

in agreement with the results of [1]. Thus, in the low-density limit

$$
\begin{equation*}
b_{2}^{(2)}=\frac{1}{3}\left(\frac{4 \pi}{3}\right)^{2} \rho\left(\beta s^{2}\right)^{2}\left(\frac{1}{9} \pi^{2}\right), \tag{6}
\end{equation*}
$$

where $\Theta(x)$ is the Heaviside step function. It is important to note that if a dependence on particle separation is short range, it is possible to replace integration over a cylinder

FIG. 1. Three-particle configuration.
(which is an assumed form of the container) by integration over a sphere. To simplify notations we set

$$
\mathbf{r}_{12}=\mathbf{R}, \quad \mathbf{r}_{13}=\mathbf{r}, \quad \mathbf{r}_{23}=\mathbf{x}, \quad \cos \alpha_{1}=\mu
$$

and choose the z axis along \mathbf{r}_{12} (see Fig. 1). Then $d \mathbf{r}_{13}=d \mathbf{r}$ $=-2 \pi r^{2} d r d \mu$ and the elements of the 123-triangle are expressed in terms of R, r, and μ :

$$
\begin{gather*}
x=\sqrt{R^{2}+r^{2}-2 r R \mu}, \tag{A5}\\
\cos \alpha_{2}=\frac{R-r \mu}{x}, \tag{A6}\\
\cos \alpha_{3}=\frac{r-R \mu}{x} . \tag{A7}
\end{gather*}
$$

We start with the function a_{D}, which, after substitution of Eqs. (A5)-(A7), reads

$$
\begin{aligned}
a_{D}= & 2 \pi \int d r \frac{1}{r} \int_{-1} d \mu f_{D}(r, R, \mu) \Theta(R-1) \\
& \times \Theta(r-1) \Theta(x(r, R, \mu)-1)
\end{aligned}
$$

with

$$
f_{D}=\frac{1}{x^{5}}\left[\left(r^{2}+R^{2}\right)\left(1-3 \mu^{2}\right)+\mu r R\left(1+3 \mu^{2}\right)\right] .
$$

The condition $x>1$ can be presented using Eq. (A5) as

$$
\begin{equation*}
\mu<h \equiv \frac{r^{2}+R^{2}-1}{2 r R} . \tag{A8}
\end{equation*}
$$

Since both r and R are larger than unity, h is always positive. Recall that by definition the values of μ are limited by $-1<\mu<1$. Two cases are possible: (1) $h>1$ implying that integration over μ is from -1 to 1 , and (2) $h<1 \mathrm{im}-$ plying that integration over μ is from -1 to h.

Performing the standard algebraic integration it is easy to verify that $\int_{-1}^{1} d \mu f_{D}=0$ implying that the first case gives zero contribution to γ_{D}. Thus, $h<1$, or equivalently; $\mid r$ $-R \mid<1$. For a fixed R it determines the domains of variation of r :

$$
R-1<r<R+1, \quad \text { if } R>2,
$$

$$
1<r<R+1, \quad \text { if } 1<R<2
$$

So,

$$
\begin{align*}
\gamma_{D}= & \int_{1<R<2} d \mathbf{R} a_{D}(R)\left(1-3 \cos ^{2} \theta_{R}\right) \\
& +\int_{R>2} d \mathbf{R} a_{D}(R)\left(1-3 \cos ^{2} \theta_{R}\right) \tag{A9}
\end{align*}
$$

Integration in the first term is over a finite domain, and therefore can be performed in spherical coordinates yielding zero. Thus, the only nontrivial contribution comes from the second term in which
$a_{D}(R)=2 \pi \int_{R-1}^{R+1} d r \frac{1}{r} \int_{-1}^{h} d \mu f_{D}(r, R, \mu)=\frac{8 \pi}{3} \frac{1}{R^{3}}, \quad R>2$.

Substituting it into Eq. (A9) we get

$$
\gamma_{D}=\frac{8 \pi}{3} \int_{R>1} d \mathbf{R} \frac{1}{R^{3}}\left(1-3 \cos ^{2} \theta_{R}\right),
$$

where the integration domain is extended to $R>1$ (the contribution of the interval $1<R<2$ is zero) yielding [cf. Eq. (21) of Ref. [2]]

$$
\begin{equation*}
\gamma_{D}=-\frac{32}{9} \pi^{2} \tag{A11}
\end{equation*}
$$

The function a_{Δ} in Eq. (A4) reads

$$
\begin{aligned}
a_{\Delta}= & 2 \pi \int d r \frac{1}{r} \int_{-1} d \mu f_{\Delta}(r, R, \mu) \Theta(R-1) \Theta \\
& \times(r-1) \Theta(x(r, R, \mu)-1)
\end{aligned}
$$

with

$$
f_{\Delta}=\frac{1}{x^{5}}\left[2 r^{2}-4 r R \mu+R^{2}\left(3 \mu^{2}-1\right)\right] .
$$

Again the condition $x>1$ can be expressed in the form (A8). We begin with dividing the R domain into $1<R<2$ and R >2.

Short-ranged part: $1<R<2$. As previously we proceed by discussing the two possibilities $h>1$ and $h<1$. The case $h>1$ corresponds to $r>R+1$. Integration over μ gives

$$
\begin{equation*}
\int_{-1}^{1} d \mu f_{\Delta}(r, R, \mu)=\frac{2}{r^{3}}\left(\frac{|r-R|}{r-R}+1\right), \tag{A12}
\end{equation*}
$$

which for $r>R+1$ results in

$$
\int_{-1}^{1} d \mu f_{\Delta}(r, R, \mu)=\frac{4}{r^{3}}, \quad r>R+1 .
$$

Its contribution to a_{Δ} is

$$
\begin{equation*}
a_{\Delta, h>1}^{(1<R<2)}=8 \pi \int_{R+1}^{\infty} d r \frac{1}{r^{4}}=\frac{8 \pi}{3} \frac{1}{(R+1)^{3}} . \tag{A13}
\end{equation*}
$$

The opposite case $h<1$ corresponds to $1<r<R+1$ and integration over μ gives

$$
\begin{align*}
\int_{-1}^{h} d \mu f_{\Delta}(r, R, \mu)= & \frac{1}{4 r^{3} R}\left(-3+2 r^{2}+r^{4}+8 R-6 R^{2}\right. \\
& \left.-2 r^{2} R^{2}+R^{4}\right) \tag{A14}
\end{align*}
$$

The contribution to a_{Δ} becomes

$$
\begin{align*}
a_{\Delta, h<1}^{(1<R<2)}= & 2 \pi \int_{1}^{R+1} d r \frac{1}{r} \int_{-1}^{h} d \mu f_{\Delta} \\
= & 2 \pi \frac{R}{12(1+R)^{3}}\left(36+12 R-19 R^{2}\right. \\
& \left.-9 R^{3}+3 R^{4}+R^{5}\right) . \tag{A15}
\end{align*}
$$

So,

$$
a_{\Delta}^{(1<R<2)}=a_{\Delta, h>1}^{(1<R<2)}+a_{\Delta, h<1}^{(1<R<2)}=2 \pi\left(\frac{4}{3}-R+\frac{R^{3}}{12}\right)
$$

and the corresponding contribution to γ_{Δ} reads

$$
\begin{equation*}
\gamma_{\Delta}^{(1<R<2)}=\frac{17}{9} \pi^{2} . \tag{A16}
\end{equation*}
$$

Long-ranged part: $2<R<\infty$. We follow the same route studying first the case $h>1$, which now can be realized for r belonging to one of the two domains:

$$
r>R+1 \quad \text { and/or } \quad 1<r<R-1 .
$$

According to Eq. (A12) integration over μ results in

$$
\int_{-1}^{1} d \mu f_{\Delta}(r, R, \mu)= \begin{cases}\frac{4}{r^{3}} & \text { for } r>R+1 \tag{A17}\\ 0 & \text { for } 1<r<R-1\end{cases}
$$

yielding

$$
a_{\Delta, h>1}^{(R>2)}=a_{\Delta, h>1}^{(1<R<2)}=\frac{8 \pi}{3} \frac{1}{(R+1)^{3}} .
$$

For $h<1$ we use Eq. (A14) to obtain

$$
a_{\Delta, h<1}^{(R>2)}=2 \pi \int_{R-1}^{R+1} d r \frac{1}{r} \int_{-1}^{h} d \mu f_{\Delta}=-\frac{8 \pi}{3} \frac{1}{(R+1)^{3}} .
$$

Thus, the long-ranged quantities $a_{\Delta, h>1}^{(R>2)}$ and $a_{\Delta, h<1}^{(R>2)}$ cancel:

$$
a_{\Delta, h>1}^{(R>2)}+a_{\Delta, h<1}^{(R>2)}=0,
$$

yielding the final result:

$$
\begin{equation*}
\gamma_{\Delta}=\frac{17}{9} \pi^{2} \tag{A18}
\end{equation*}
$$

[1] I. Szalai, K.-Y. Chan, and D. Henderson, preceding paper, Phys. Rev. E 62, 8842 (2000).
[2] V.I. Kalikmanov, Phys. Rev. E 59, 5085 (1999).
[3] J.S. H內ye and G. Stell, J. Chem. Phys. 63, 5342 (1975).

